LFM/CMIT at CCMC

Progress and Challenges

Mike Wiltberger, Pete Schmitt: HAO

Slava Merkin: APL

Erik Wilson: BU

Frank Toffoletto, Asher Pembroke: Rice

CCMC staff, particularly Lutz Rastaetter

CISM Coupling Framework

- Needed to develop programming paradigm which allows for efficient coupling of models and is flexible enough to allow adding new physics and models
 - efficient transmission of information among codes
 - interpolation of data between grids
 - translation of physical variables between codes
 - control mechanisms to synchronize execution and interaction between codes
 - minimal modifications to existing code base
- Intercomm University of Maryland A. Sussman
 - Solution to the MxN problem in coupling parallel codes
 - Addresses the control issues
- Overture LLNL B. Henshaw & D. Quinlan
 - C++ framework for solving differential equations on overset grids
 - Used to handle interpolation between model grids

LFM Magnetospheric Model

 Uses the ideal MHD equations to model the interaction between the solar wind, magnetosphere, and ionosphere

- Computational domain
 - 30 $R_F < x < -300 R_F \& \pm 100 R_F$ for YZ
 - Inner radius at 2 R_E
- Calculates
 - full MHD state vector everywhere within computational domain
- Requires
 - Solar wind MHD state vector along outer boundary
 - Empirical model for determining energy flux of precipitating electrons
 - Cross polar cap potential pattern in high latitude region which is used to determine boundary condition on flow

MIX – Ionospheric Coupler

- Uses polar grid in ionosphere
- Flexible boundary conditions
- Can take field-aligned currents from multiple sources
- Completely separates MHD magnetosphere from ionospheric calculation

CMIT

TIEGCM

- Uses coupled set of conservation and chemistry equations to study mesoscale process in the thermosphere-ionosphere
 - Computational domain
 - Entire globe from approximately 97km to 500km in altitude

Calculates

- Solves coupled equations of momentum, energy, and mass continuity for the neutrals and O⁺
- Uses chemical equilibrium to determine densities, temperatures other electrons and other ions (NO⁺, O₂⁺,N₂⁺,N⁺)

Requires

- Solar radiation flux as parameterized by F10.7
- Auroral particle energy flux
- High latitude ion drifts
- Tidal forcing at lower boundary

LTR – Tightly Coupled System

- Coupling thrust has worked closely with to implement coupling between CMIT and RCM
 - Now producing its first science results

LFM/CMIT at CCMC

- Initial work started about 5 years ago
 - OpenMP version (not very useful)
- Parallel version on line about 6/2009
 - 84 runs since, mostly this year

About Models at CCMC Request A Run View Results Instant Run Metrics and Validation Education RT Simulations

▶Runs on Request: Simulations Results

Total Number of Runs in the Database: 2310 Total Number of Search Results in this Database: 84

Run Number	Key Words	Model	Model Version	Validation Level	Run Type		Coordinate System for Input		(in the X-Z Plane)	Dipole Tilt in Y-Z	D Orie
Lutz_Rastaetter_040809_1	Polar cap	LFM	1		event	var	GSM	SM	0.00	0.00	
Peter_Schmitt_060509_1	test_oo	LFM	1		model	fix	GSM	SM	0.00	0.00	
Peter_Schmitt_061209_1	test_01	LFM	1		event	var	GSM	SM	0.00	0.00	
Lutz_Rastaetter_062309_1	GEM 2009 Modeling Challenge	LFM	#		model	var	GSM	GSE	0.00	0.00	

SWPC_CMIT-LFM-MIX_031711_1	SWPC GEM Challenge	LFM	LTR-2_1_1	 event	var	GSM	SM	0.00
SWPC_CMIT-LFM-MIX_031711_3	SWPC 2011 Challenge	LFM	LTR-2_1_1	 event	var	GSM	SM	0.00
SWPC_CMIT-LFM-MIX_031711_4	SWPC 2011 Challenge	LFM	LTR-2_1_1	 event	var	GSM	SM	0.00
HSS2011_LFMhr_060311_4	HSS2011, equinox, quiet, increased resolution	LFM	LTR-2_1_1	 model	fix	GSM	SM	0.00
SWPC_CMIT-LFM-MIX-TIEGCM_031711_3	SWPC 2011 Challenge	LFM	LTR-2_1_1	 event	var	GSM	SM	0.00
SWPC_CMIT-LFM-MIX- TIEGCM_031711_4	SWPC 2011 Challenge	LFM	LTR-2_1_1	 event	var	GSM	SM	0.00
monte_andres_072211_1	magnetosphere response	LFM	LTR-2_1_1	 model	var	GSM	SM	0.00
Bruce_Tepke_081011_1	storms	LFM	LTR-2_1_1	 event	var	GSM	SM	0.00
michelle_mendoza_091311_1	test	LFM	LTR-2_1_1	 model	fix	GSM	SM	-27.00
Xi_Shao_092011_1	ULF Wave Excitation	LFM	LTR-2_1_1	 event	var	GSM	SM	0.00
rushat_shatur_093011_3	high resolution run	LFM	LTR-2_1_1	 event	var	GSM	SM	0.00
Xi_Shao_111611_1	ULD wave, Storm	LFM	LTR-2_1_1	 event	var	GSM	SM	0.00
Bruce_Tepke_121511_1	storm substorms	LFM	LTR-2_1_1	 event		GSM	SM	0.00
Kris_Kersten_111511_1	22 oct 2001	LFM	LTR-2_1_1	 event	var	GSM	SM	0.00
Kris_Kersten_121211_1	22 oct 2001	LFM	LTR-2_1_1	 event	var	GSM	SM	0.00

Development Plans-2012

- Primarily Maintenance release
- New version LFM
 - Improved parallel performance
 - Multi-fluid capability
 - Can be used for outflow studies, plasmasphere, etc.
 - Creates challenges for CCMC interface
- MIX improvements
 - Better ionospheric conductance model based on work by Binzheng Zhang
- Current released version of TIEGCM
- RCM hooks added, but physics still being tested

Challenges

- Resolution/Grid Convergence
 - In high Reynolds number flow no reason to expect absolute grid convergence
 - Good enough convergence
- Data Management
 - Higher resolution requires ways of handling large amounts of data
 - Data products
- Additional Physics
 - Can it be made available to the community

Grid convergence

- Some movies for a simple IMF case
 - -400 km/s
 - $-N = 5 / cm^3$
 - $-2 \text{ hrs B}_{7} = -5 \text{ nT}$
 - $-2 \text{ hrs B}_{7} = 5 \text{ nT}$
 - then $B_z = -5$ nT
- Resolution:
 - 100 km in ionosphere
 - 1000 km (at 10 R_F) in magnetosphere
 - Approx. 8 million cells (run on 1000 processors)

B_Z - $B_{Z,dipole}$

Features

- Dipolarization fronts are regions of depleted flux tube entropy: Bubbles
- Scale size in mid tail seems resolved, but approaches grid scale in inner magnetosphere
- Is it real?
 - Flux tube entropy seems to be pretty well conserved

Ionosphere (FAC & Aurora)

Good Enough Resolution?

Comparison of AMPERE with LFM (CCMC resolution)

Better, Good Enough?

Good Enough!

- CCMC needs more computational resources
 - Could wait for Moore's Law
 - Then you should never start any computational project

Data Management

- Previous run:
 - Individual step 0.8 Gbytes
 - Whole run ~ 1Tbyte
- CCMC idea of having runs archived at their facility right way to go
 - Need more facilities
 - User analysis needs a lot of resources
 - Computational
 - People!!!

New Physics

- MHD Hall, anisotropic P, etc.
- Ionospheric Conductance
 - Note substorm current wedge
- Ionospheric outflow
- Challenge:

Return of the GEM Patch Panel

Conclusion

- CCMC is doing a great job, so much so that former LFM grad students are using it
- CCMC needs more resources to allow the community to have
 - Good enough resolution
 - Ability to tweak their own knobs

Backup

